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ARTICLE INFO ABSTRACT

Keywords: Best-worst scaling (BWS) has become so useful that practitioners feel pressure to include ever
Best-worst scaling more items in their experiments. Researchers wanting more items and enough observations of
Discrete choice experiments each item by each respondent to support individual respondent-level utility models may greatly
Large numbers of items increase the burden on respondents, resulting in respondent fatigue and potentially in lower

quality responses. Wirth and Wolfrath (2012) proposed two methods for creating BWS designs
that allow for large numbers of items and respondent-level utility estimation, Sparse and Express
BWS. This study aims to uncover the recommended approach when the goal is recovering in-
dividual respondent-level utilities and intends to do so by comparing the relative ability of Sparse
and Express BWS to capture the utilities that would have resulted from a full BWS experiment,
one with at least three observations of each item by each respondent. The current study repeats
previous comparisons of Sparse and Express BWS using a new empirical data set. It also extends
previous findings by collecting enough observations from each respondent for both a full ex-
periment and one of the proposed methods, Express BWS and Sparse BWS. The results replicate
and extend previous findings regarding the superior ability of the Sparse BWS methodology,
relative to Express, to reproduce “known” utilities or utilities that result from a full BWS design.

1. Introduction
1.1. Best-Worst Scaling

Rating scales suffer from significant shortcomings: different respondents use them differently, producing response set effects or
scale use bias (Baumgartner and Steenkamp, 2001). A well-known halo effect (Thorndike, 1920) can cause artificially high corre-
lations among ratings of disparate constructs, even when the meaning of those constructs would suggest zero or even negative
correlations (in Thorndike's memorable phrasing, the correlations he found among logically unrelated items were “too high and too
even”). Finn and Louviere (1992) developed Best-Worst Scaling (BWS) as an alternative to rating scales, designed to elicit powerful
measures of relative preference using respondent-friendly questions. For example, in the study of 36 dessert items described in
Section 3, the BWS experiment includes a series of questions listing four desserts each; each question forces the respondent to make
tradeoffs in that she can choose a single most liked dessert and a single least liked dessert (see Fig. 1 below).

Three variants of BWS now exist. BWS Case 1, the “object” case, involves respondent evaluations of best and worst items or
objects from short lists of items. Case 1 is the form of BWS first introduced by Finn and Louviere (1992) and it features designed
choice sets presented in a straightforward respondent task which, when subjected to appropriate analysis, enables a researcher to
place multiple items on a single scale (Marley and Louviere, 2005; Louviere et al., 2015). BWS Case 2, the “profile” case, has
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Now imagine that you've had an evening meal at the casual dining restaurant and that you've decided to
buy a dessert. Considering only these 4 desserts, which would you like the Most and which would you like

the Least?
(1 of 27)
Most Least
) Coconut cream pie (@]
() Mango lassi -~
® Créme bralée O
) Vanilla milk shake )

Fig. 1. Example BWS question.

respondents choose best and worst attribute levels from conjoint-style profiles, while Case 3, the “multi-profile” case, has respondents
choose best and worse profiles from choices sets of multiple profiles (Louviere et al., 2015). This paper concerns only BWS Case 1,
henceforth BWS for short. As a general scaling method, BWS can be used, for example, to measure the relative appeal of public policy
options or of new product ideas (Finn and Louviere, 1992); or the relative importance of product attributes in a purchase decision
(Lockshin and Cohen, 2015); or the extent to which respondents agree with items on a psychometric scale (Lee et al., 2007).

The set of BWS questions each respondent sees conform to an experimental design, which may be common across all respondents,
unique for each respondent or blocked so that different groups of respondents receive different sets of questions. Early versions of
BWS used orthogonal main effects designs but today researchers use balanced incomplete block designs (when they exist) or designs
found through computer search algorithms (Kuhfeld and Wurst, 2012).

As for any other successful methodology, end users of BWS results press researchers to do more: more studies, across more subject
areas, and, especially, with more items. We note that this problem does not seem to affect many published papers on BWS - the book
by Louviere, Flynn and Marley includes case studies with only up to 13 items, while papers from the past four years of The Journal of
Choice Modeling had as many as 17 items. Practitioners, however, frequently study many more items: in the past year nearly a third of
the authors’ studies have involved 30 or more items, nearly one in 10 involves 50 or more items and a handful involve 100 or more
items. The authors are also aware of a client doing several studies a month with 100 + items.

1.2. Large numbers of items

But as a BWS experiment includes more items, the demands on the respondent increase. In a standard best-worst experiment
where we want to show each item three times, one can determine the appropriate number of questions, depending on the total
number of items using simple math, multiplying three times the number of items in the study and dividing by the number of items per
question. Increasing the total number of items increases the number of questions per respondent, and thus the length of the survey, at
some point adversely affecting the quality of responses.

There are two methods developed to accommodate large numbers of items, namely Sparse and Express BWS, described in section
2. This paper reviews prior research comparing the two methods, in which Sparse BWS appears to have an edge over Express BWS.
We then combine the strengths of the previous comparative studies in a new empirical study, the results of which point even more
strongly to Sparse BWS as the better method to handle large numbers of items.

As noted, marketing research practitioners have clients who want to include large numbers of items in BWS surveys, often more
than 30 items and sometimes many more than that. In addition to having large numbers of items, applied researchers often need
individual respondent-level BWS utilities for use in subsequent analyses like factor analysis, reliability analysis, cluster analysis and
TURF (Total Unduplicated Reach and Frequency, a method for prioritizing bundles of items borrowed from the world of advertising
research). The simultaneous pressure of having many items and requiring high-quality respondent-level utilities means that the
standard advice that each respondent sees each item three or four times will result in a very lengthy survey (e.g. 75 items shown in
sets of 5 items each would require 45 BWS questions per respondent in order for each respondent to see each item three times). To
some extent, this resembles the problem of too many attributes in stated choice experiments for which several solutions have also
been proposed (Green et al., 1981; Chrzan, 2010; Zhang et al., 2015). Again, however, this problem appears to be one that affects
practitioners and one that has not heretofore appeared in the academic literature. Several methods have been proposed in the
practitioner literature to reduce the respondent burden.

2. Research background
2.1. Modeling best-worst choices

Assuming the best and worst choices derive from a common underlying utility function, one combines the best and worst choices
into a single model that results in a separate score, or utility, for each item. Perfectly balanced BWS experiments (e.g. those using

balanced incomplete block designs) may be analyzed easily, without recourse even to computer analysis, simply by subtracting the
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number of times each item is identified as worst from the number of times it is selected as best and comparing these net counts across
the items (Louviere et al., 2015). Lipovetsky and Conklin (2014) offer an additional utility estimation formula which Marley et al.
(2016) found to predict in- and out-of-sample choices better than another common count-based estimator of BWS utilities. One can
also use statistical models to extend the ability to estimate utilities to cases of imperfectly balanced experimental designs: aggregate
multinomial logit, MNL, for sample-level utility estimates (McFadden, 1974) or latent class MNL (DeSarbo et al., 1995) for segment-
level utility estimates. In the field of marketing, interest in developing products for market segments has led to the widespread
adoption of hierarchical Bayesian mixed logit (Allenby and Ginter, 1995) which produces individual respondent-level utility esti-
mates. In a study using artificial respondents with known utilities, Orme (2005) showed that using choice sets of four to five items
and enough sets to enable each respondent to see each item in three to four sets suffices for reliable respondent-level utility estimation
in BWS studies. Subsequently, we refer to an experiment in which each item appears in at least three choice sets per respondent as a
“Full” BWS experiment.

2.2. Sparse and express BWS

Two approaches for accommodating large numbers of items in a BWS experiment come from Wirth and Wolfrath (2012) who
propose methods that allow for potentially many more items than standard BWS (the authors are aware of commercial studies of 100
or more items that have used each of these two methods). Express BWS shows different respondents different subsets of the items;
each respondent sees each of the items in her subset (and only those items) three or four times. For example, in a study of 100 items,
we might randomly select a unique subset of 24 items for each respondent. Each respondent receives 18 choice sets of four items each,
with each of the 24 items in her unique subset presented in three choice sets, and with none of the other 76 items presented. Each
respondent receives a different subsets of items, but across respondents, every item would be included in some respondents' subsets. A
Sparse BWS, on the other hand, allows each item to appear as infrequently as just once across each respondent's BWS questions
(rather than the previously suggested three to four times). To continue the example study of 100 items, we might, with a Sparse BWS
experiment, show each respondent 20 sets of five items each. A given respondent would see all 100 items, with each item appearing
in exactly one choice set. Different respondents would receive different blocks of the experimental design, allowing each item to
appear with all the other items as well as enabling us to control for order and position effects.

2.3. Previous comparisons of sparse and express BWS

Wirth and Wolfrath (2012) report that Sparse BWS performs slightly better than Express BWS in terms of predicting best and
worst choices in holdout choice sets in an empirical study. They also report the results of a Monte Carlo study of Express BWS that
shows it recovering the known parameters of artificial respondents well — almost perfectly for sample-level utilities and reasonably
well for respondent-level utilities. They did not, however, conduct a similar analysis for Sparse BWS.

Chrzan (2015) expanded upon Wirth and Wolfrath's artificial data analysis. His study compared Sparse and Express BWS using
two artificial data studies based on individual respondent-level utilities from human respondents in commercial research. In both
studies, Sparse and Express BWS recovered known mean sample-level utilities accurately: correlations averaged 0.995 across the two
studies for Sparse and 0.989 for Express, a statistically significant but practically ignorable difference. The two methods differed in
their ability to reproduce utilities at the individual respondent-level, however, with Sparse at a 0.804 correlation with known utilities
versus 0.743 for Express, a statistically significant and meaningfully large difference between the two methods.

Serpetti et al. (2016) conducted further investigation among human respondents. Using 2,202 respondents, Serpetti et al. showed
that in-sample, Sparse was better able than Express to mimic item's rankings from a Full BWS in-sample (correlation of 0.49 versus
0.41) and out-of-sample that Sparse produced lower MAE than Express (0.034 versus 0.038).

Thus, findings to date agree that Sparse BWS handles large item sets better than Express BWS. However, previous studies have
either compared Sparse BWS and Express BWS in terms of how well their sample mean utilities compare to the mean utilities from a
Full BWS experiment; or they used artificial respondents to investigate the ability of Sparse and Express BWS to reproduce known
respondent-level utilities. We seek, with the current study, to repeat previous analyses conducted at the level of mean utilities for
samples of respondents while also expanding our analysis to compare individual respondent-level utilities estimated from Sparse and
Express BWS to individual respondent-level utilities from a Full BWS experiment, for those same human respondents. In other words,
we seek to extend the Chrzan (2015) respondent-level parameter recovery experiment to human respondents, treating respondents’
Full BWS utilities as the “known” utilities we want to be able to reproduce. This approach will provide another comparison of
whether sample mean utilities for Sparse or Express BWS better reflect those from a Full BWS. Extending the analysis to assess the
ability of Sparse and Express BWS to recover known individual respondent-level utilities (from a Full BWS experiment) adds a
powerful new comparison not previously applied to human respondents.

3. Current empirical study
3.1. Methods
3.1.1. Research design
In a survey of 1,207 recent customers of casual dining restaurants, we asked respondents about their relative preference for 36

dessert items (Table 1). (See Fig. 1 for an example Best-Worst question)
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Table 1
All 36 dessert items.
Item # Item
1 Créme briilée
2 Italian gelato
3 Belgian waffle ice cream cone
4 Churros
5 French silk pie
6 Cinnamon roll
7 Coconut creme pie
8 Apple pie
9 Chocolate molten cake
10 Mango lassi
11 Chocolate mousse
12 Bread pudding
13 Hot fudge sundae
14 Salted caramel sundae
15 Vanilla milk shake
16 Strawberry milk shake
17 Chocolate layer cake
18 Lemon meringue pie
19 Flan
20 Skillet chocolate chip cookie
21 Cherry pie
22 Texas pecan pie
23 Louisiana mud pie
24 Peach cobbler
25 Cinnamon crumble cake
26 New York cheesecake
27 Oreo cheesecake
28 Peanut butter cheesecake
29 Hot brownie sundae
30 Rice pudding
31 Key lime pie
32 Tiramisu
33 Red velvet cake
34 Blueberry tart
35 Cannoli
36 Pumpkin cheesecake

The respondent in this example identifies the one dessert she would most enjoy and the one dessert she would least enjoy, among
the set of four. Subsequent questions would include different subsets of four of the 36 desserts until the respondent ended up seeing
each dessert a few times.

Because our primary contribution in this paper involves comparing the ability of Sparse and Express BWS to reproduce known
utilities at the individual respondent-level, and because we know those utilities only by estimating a Full BWS experiment for those
respondents, we wanted to limit the number of items to what we could confidently believe a Full BWS experiment could handle.
Extending to 100 or 200 items would have prevented us from relying on the utilities from the Full BWS (indeed, doing so would be an
instance of the problem researchers use Sparse and Express BWS to solve).

For purposes of this research, we randomly assigned each respondent to one of three cells: the Sparse BWS treatment cell, the
Express BWS treatment cell and a Full BWS control cell (See Table 2).

For the Full BWS control cell, each respondent received one of 100 blocks of 27 sets of quads, where each block results from a
computer search for an efficient experiment that balances the frequency with which each item appears, orthogonality and the
frequency with which each item appears in each of the four positions in the choice set (top, second, third, bottom). Having 100 blocks
allows us to cover a larger part of the design space than would a single version, and it allows us to even out order and position effects
as well. The 27 quads allow each respondent to see each of the 36 dessert items three times, making this a Full BWS design. A total of

Table 2
Comparison of full, sparse and express experimental designs.
Research Design for Comparison of Sparse and Express BWS to Full BWS Experiment Full BWS Sparse BWS Express BWS
# of Choice Sets 27 9 9
# of Items/Choice Set 4 4 4
# of Items to be tested per respondent 36 36 12
Average # of times each item is seen 3 1 3
Total N 403 400 404
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Table 3
Additional detail on sparse experimental design.

Research Design for Comparing Sparse BWS with Full BWS on the same sample  Sparse BWS  Additional 18 tasks given to Sparse Cell ~ Full Sparse BWS

# of Choice Sets 9 18 27
# of Items/Choice Set 4 4 4
# of Items to be tested per respondent 36 36 36
Average # of times each item is seen 1 2 3

403 respondents completed the Full BWS.

The Sparse BWS treatment cell contained 400 respondents. We made a single, highly efficient block for the design, again looking
to balance the frequency with which each item appears (once per respondent in this case) and the frequency with which each item
appears in each position. For each respondent, we randomized the assignment of desserts to design positions. Thus the dessert
attached to the 26th item in the design might be the New York Cheesecake for one respondent and Texas Pecan Pie for the next. In
effect, each respondent received a unique set of experimental stimuli. Respondents in this cell received nine sets of quads, with each
item appearing just once. We also asked each respondent two more efficient sets of nine quads each, so that each respondent still sees
27 questions, resulting in each item being seen three times. Showing each item in 27 choice sets allows us to estimate Full BWS results
even for respondents in the Sparse BWS treatment cell, thus enabling us to test the ability of Sparse BWS to recover the known,
individual respondent-level utilities of a Full BWS experiment (See Table 3).

The Express BWS treatment cell had 404 respondents. The first nine quads of each respondent's BWS experiment includes an
individualized random subset of 12 dessert items out of the full set of 36 dessert items. In those first nine quads, each respondent sees
each item in his random subset of 12 dessert items three times. Utilities from only these nine quads feature in the direct comparisons
of the estimated Sparse and Express BWS models. As in the Sparse BWS treatment cell, we also asked each respondent in this cell 18
more efficiently designed quads, with each of the 36 items appearing twice each. Therefore, on average, across the full 27 sets of
quads, each respondent sees each item three times (12 of the items five times each and the other 24 items just twice). We used
computerized search software to identify efficient designs, in 100 blocks each, for both the first nine and the final 18 choice sets in the
Express BWS cell, thus controlling for order and position effects in the Express BWS treatment cell (See Table 4).

3.1.2. Model estimation

To create BWS scores, we assume respondents consider all k items in the set and choose one pair that maximizes the distance
between the ‘best’ item and the ‘worst’ item (this is also why BWS is often referred to as MaxDiff). Because we have best and worst
responses, the independent variable matrices are dummy-coded as two separate sets: one for best and one for worst responses. If a
design matrix X describes best choices then design matrix -X describes worst choices and we concatenate both designs in utility
estimation (pooled estimation). Bacon et al. (2007) compared this estimation method with one that codes best-worst choices to
identify maximally differing items in choice sets and concluded that utilities produced by the different methods “did not system-
atically differ, despite our concerted effort to show the contrary.” Dyachenko et al. (2014) suggest a sequential estimation of BWS but
pooling of best and worst choices seems to be the most common method for estimating BWS utilities, used in both the analytical Best-
Worst estimator (Lipovetsky and Conklin, 2014) and the difference in best and worst counts described by Louviere et al. (2015), as
well as in commercial BWS software (Sawtooth Software, 2013).

Each of the five utility sets (Full, Sparse, Express, Sparse Full, Express Full) will be estimated using a hierarchical Bayesian (HB)
mixed logit model (Allenby and Ginter, 1995). This “random-effects" model assumes that the respondent weights are normally
distributed in the population. To avoid linear dependency in the model, the last level is omitted and the utility is constrained to zero.
All other K-1 levels are estimated with respect to that level's zero parameter. In this study, Pumpkin Cheesecake, item 36, was the
omitted level.

HB borrows information across the sample to stabilize the estimates for each individual. It is called “hierarchical” because it has
two levels. At the higher level, the individuals' part-worth utilities are assumed to be described by a multivariate normal distribution,
characterized by a vector of means and a matrix of covariances. At the lower level we assume that the probability of an individual
choosing a particular alternative, given that individual's part-worths, is governed by a multinomial logit model (MNL).

For each of the five utility models, we planned to use 20,000 burn-in iterations and 10,000 saved iterations. Burn-in iterations are
done before convergence is assumed and are not saved. The saved iterations are used in analysis to develop the point estimates. The
final point estimate is an average of the saved iterations for each respondent.

Table 4
Additional detail on express experimental design.

Research Design for Comparing Express BWS with Full BWS on the same sample ~ Express BWS  Additional 18 tasks given to Express Cell ~ Full Express BWS

# of Choice Sets 9 18 27
# of Items/Choice Set 4 4 4
# of Items to be tested per respondent 12 36 36
Average # of times each item is seen 3 2 3
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One must also declare the Degrees of Freedom (5) and Prior Variance (1.0) prior to model estimation. The prior degrees of
freedom refer to the covariance matrix and do not include the number of parameters to be estimated. A prior variance reflects the
weight on fitting each individual's data, versus the amount of information borrowed from the population parameters.

The model produces raw logit-scaled parameters for each individual that we then zero-centered and transformed to a 0-100 scale.
These individual respondent-level results are then averaged to create a sample utility measure. Those sample utility measures were
then transformed into a ranking of the 36 items. This resulted in both a sample utility measure and a sample rank for 36 desserts for
each experiment. The sample utility measure, standard deviation and ranking are presented in Appendix 6 for each of the five models.
The methods of rescaling are also reported in Appendix 6.

3.1.3. Planned comparisons

First, we want to test whether Sparse or Express BWS does a better job of predicting the results of the control cell (the Full BWS
experiment). For this comparison, we will estimate the mean BWS utilities for each of the 36 desserts according to the model
estimation plans in section 3.1.2, in each the Full BWS experiment (27 quads), Sparse BWS (nine quads) and Express BWS (nine
quads). Then we will average the individual respondent-level utilities to get one sample utility score for each of the 36 desserts, for
each of the three experiments. Next, we will compare the sample utilities in the Sparse and Express BWS experiments with the sample
utilities in the control cell (the Full BWS experiment) using the test of dependent correlations (Cohen and Cohen, 1983). Applied
researchers sometimes report ranks rather than BWS utilities, so while we expect similar results, we will also look at the rank ordering
of the sample utilities of the 36 desserts for all three experiments. We will compare the Sparse BWS sample rankings and Express BWS
sample rankings with the control cell sample rankings, again using the test of dependent correlations.

We also plan to assess the ability of Sparse and Express BWS to recover “known” parameters at the individual respondent-level.
For this analysis, we assume that the estimation from each respondent's set of 27 quads makes for a more valid measure of that
respondent's utilities than would estimation from the smaller set of nine quads, be they Sparse or Express BWS, thus we call them
“known” parameters. For this analysis, we will use the individual respondent-level utility estimates for the nine quads for the Sparse
and Express BWS Experiments already estimated. We employ the same model estimation settings as described in Section 3.1.2 for the
respondents' 27 sets of quads for each the Sparse and Express BWS experiments. These utility estimates are what we will refer to as
the “known” utility estimates for both experiments. Two sets of utilities now exist for the 36 dessert items per respondent - one for the
nine sets of quads and the other for the complete 27 sets of quads, dependent upon which exercise they completed — the Sparse BWS
or Express BWS. For example, each of the 400 respondents in the Sparse BWS cell provides two sets of utilities for each of the 36
dessert items, one set “known” and one set Sparse. We concatenate these 36 utility estimates (nine quads, Sparse) and “known” (27
quads) utility estimates across all 400 respondents so that we have a 2 by 14,400 matrix for each of the two treatment cells'
correlations. We compare the correlation of the utilities for Sparse and Express BWS treatment cells using a test for independent
correlations (Cohen and Cohen, 1983).

3.2. Results

3.2.1. Comparison of time statistics per experiment

The three BWS tasks took respondents about the same amount of time to answer. Median completion times for the nine Sparse and
Express BWS questions were 2.63 and 2.57 min, respectively. For the full set of 27 questions, median completion times were 7.57 min
for Full BWS, 7.28 min for Sparse BWS and 7.43 min for Express BWS. Though other questions came before the BWS section, fatigue
should not have affected respondents because the median total survey length was just 7.9 min.

3.2.2. Comparison of Sparse and Express BWS to full BWS experiment

The first step is to compare the sample utilities found in the Sparse and Express BWS experiments with the sample utilities found
in the control cell (the Full BWS experiment) using the test of dependent correlations (Cohen and Cohen, 1983).

While both Sparse and Express predict the Full BWS utilities and rank data well, the Sparse utilities may be more strongly
correlated with the Full BWS utilities than are the Express utilities. This claim is significant at the 90% confidence interval in favor of
Sparse BWS when comparing the difference between correlations for the utilities (z = 1.93, p = 0.0 536). This confirms the Serpetti
et al. (2016) findings that there are meaningful differences between Sparse and Express in terms of predicting utilities. However, the
difference between correlations for ranks is not significant (z = 1.27, p = 0.2041) (Table 5).

3.2.3. Ability of Sparse and Express BWS to recover “known” utility estimates
In order to test the ability of Sparse and Express BWS to recover “known” parameters at the individual respondent-level, we
compare the “known” utilities from the 27 Sparse and Express BWS quads, with the previously discovered utilities from the nine

Table 5

Sample level correlation with full BWS experiment.
Sample Results Corr (utilities) Corr (ranks)
Sparse BWS 0.9602 0.9416
Express BWS 0.9004 0.8937
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Table 6
Respondent-level correlations with “known” parameter estimates.

Sparse (27 quads)

Individual Results Corr (utilities) Corr (ranks)
Sparse (9 quads) 0.8417 0.8084

Express (27 quads)

Individual Results Corr (utilities) Corr (ranks)
Express (9 quads) 0.6712 0.6026

Sparse BWS quads and the nine Express BWS quads.

Comparisons using an independent correlations test (Cohen and Cohen, 1983) find that the correlations between Sparse BWS
utilities and the Sparse “known” utilities, as well as the Sparse BWS ranks and the Sparse “known” ranks, are significantly higher than
the correlations between the Express BWS and Express “Known” utilities and ranks (Utility z = 35.22, p < 0.001; Rank z = 36.16,
p < 0.001) (see Table 6).

This drastic difference reaffirms the advantage in favor of Sparse over Express BWS for large item sets. These comparisons also
show that the decrement in quality is severe when choosing Express BWS over Full BWS when needing individual respondent-level
utilities, but much less severe when choosing Sparse BWS over Full BWS.

4. Summary and conclusion

In this paper we test two methods for accommodating large numbers of items in a BWS experiment. Our motivation for this
research comes from our role as practitioners, facing a common situation wherein our clients want to evaluate many items in their
BWS studies. At the same time, those clients typically want to have respondent-level utilities capable of supporting subsequent
analyses such as segmentation, simulations, and TURF analyses.

This research confirms consistent earlier findings about the equivalent ability of Sparse BWS and Express BWS to replicate sample
level utilities (and sample item ranks) of a holdout set of respondents. The unique contribution is that this paper extends to human
respondents the finding that Sparse BWS better reproduces known respondent-level utilities (and item ranks) than does Express BWS,
a finding previously only shown for artificial respondents. Practitioners facing the common challenge of a BWS study with a large
number of items can now make evidence-based decisions about how best to design their studies.

5. Discussion and next steps
5.1. When to use each method?

Some applied choice modelers prefer Sparse BWS, some prefer Express BWS and others are unsure which to use. Such preferences,
when they exist, appear to be based more on hunches than on conceptual grounds. One assumption may be that Sparse BWS
outperforms Express BWS because, although the data matrix is sparse at the individual level, the model has some information to
inform each individual's utilities, where Express BWS has to rely more heavily on aggregate priors to estimate individual respondent-
level utilities for the other items. On the other hand, some assume Express will outperform Sparse because more observations of each
item at the individual level make the model's estimates more stable, at least for those items within the subset shown in the Express
BWS experiment.

This research provides evidence-based methodological guidance to practitioners. Applied choice modelers can be reassured of the
feasibility of commercial BWS studies with dozens or scores of items. Sparse and Express BWS both provide excellent sample level
utility estimates. Moreover, this research provides evidence to practitioners that Sparse BWS produces much better individual re-
spondent-level utilities than does Express BWS, and is thus a better choice if their study objectives involve estimating individual
respondent-level item scores.

If a study's objectives require item scores only at the sample level and not for individual respondents, Full, Sparse, or Express BWS
will fit the bill, with the latter two methods doing so with less effort on the part of the respondents and with less investment in
questionnaire real estate. For research efforts that require individual respondent-level BWS utilities, Sparse BWS will outperform
Express BWS in terms of producing more valid respondent-level utilities.

We do not believe that Sparse BWS scales up indefinitely. At some point beyond 100 items, when even Sparse BWS would require
more than 30 or 40 choice sets, Sparse BWS may become too onerous for respondents and Express BWS may be the last method
standing.

5.2. Psychological or algorithmic effects?

While our recommendations in favor of Sparse BWS are strong, we are unclear whether the advantages of Sparse result from
psychological effects or algorithmic effects. For example, respondents are shown a greater variety of items in the Sparse approach,
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versus a restricted subset of items in the Express approach. Therefore Sparse BWS may retain a respondent's interest better, resulting
in better predictions. Algorithmically, Sparse BWS gives the Bayesian MNL model some information on every item, while Express
offers three times as much information about a subset of the items, but no information on the remaining items. Our research does not
identify the reason for the superior performance of Sparse BWS. Future research could investigate why Sparse performs better than
Express BWS.

5.3. Other ways to improve express BWS?

Additional consideration should be given to using covariates within an Express BWS model, as borrowing information in a
hierarchical model from other like-minded individuals may better inform the model for those items not shown in the subset.
However, careful thought must be given while developing the questionnaire to ensure that there are proper variables in the study that
would allow for this investigation. This research did not anticipate the need for covariates, and thus did not have useful options for
investigation.

We are unsure as to which of Sparse BWS or Express BWS, if either, would favor different kinds of items, different mixes of more
and less appealing items or even different dimensions on which the items might be scaled (e.g. preference, appeal, agreement,
willingness to buy, etc.). Other considerations include enlarging the proportion of items included in the Express BWS. This study and
Serpetti et al. findings only show that Sparse BWS outperforms Express BWS when each respondent sees a third of the total number of
items under study in their Express BWS experiment.

5.4. Examining survey fatigue

While this paper was not designed to test survey fatigue and its impact on the performance of the Sparse and Express BWS
approaches, we believe this is an interesting topic for future research and recommend an item set larger than 36, preferably closer to
100. Additional recommendations on different topics, scales, and size of the Express subset could also impact these measures.

5.5. BWS cases 2 and 3

The challenge posed by large numbers of items would face BWS Case 2 studies if profiles included many attributes. Likewise, for
Case 3, the profile case, many attributes, and many profiles could both prove challenging. This paper does not specifically address
these challenges for Cases 2 or 3.

Appendix

The results shown in the subsequent tables (Table 7 through 11) include three results — the sample (average) utility, the utility
standard deviation, and the utility rank. The sample (average) utility is created by employing a hierarchical Bayesian (HB) model to
estimate individual respondent-level utilities under the logit rule. Those scores, typically consist of both negative and positive values
that are on an interval scale. Therefore, these scores are typically converted into probabilities that range from 0 to 100, with ratio-
scaling properties where an item with a score of 4 is twice as preferred as an item with a score of 2. To convert the raw scores to the
0-100 point scale, one must first zero-center the individual scores by subtracting the mean score for each respondent from each
respondent's scores. These zero-centered scores are then exponentiated per respondent using the following formula:

gUi

(Y +a-1)

where:

U; = zero-centered raw logit weight for item i
eVl is equivalent to taking the antilog of U;. In Excel, use the formula = EXP(U;)
a = Number of items shown per set

This results in a score for all 36 items whose total scores sums to 100. After rescaling, one can take the standard deviation across
the sample (a reflection of heterogeneity). The standard deviation is naturally larger for higher-scoring items and smaller for lower-
scoring items. Finally, a rank is provided, transforming the sample (average) utilities into an overall Utility Rank.

For convenience, all the tables are sorted from best to worst with regard to the sample average utility scores for the Full BWS
experiment.

Table 7
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Item # Item Sample (Average) Utility Utility Standard Deviation Utility Rank
26 New York cheesecake 4.773 2.536 1
29 Hot brownie sundae 4.544 2.175 2
9 Chocolate molten cake 4.319 2.357 3
13 Hot fudge sundae 4.256 2.129 4
27 Oreo cheesecake 4.252 2.566 5
17 Chocolate layer cake 4.112 2.252 6
11 Chocolate mousse 3.594 2.176 7
33 Red velvet cake 3.464 2.552 8
20 Skillet chocolate chip cookie 3.309 2.333 9
8 Apple pie 3.224 2:335 10
28 Peanut butter cheesecake 3.150 2.761 11
14 Salted caramel sundae 3.068 2.137 12
24 Peach cobbler 3.007 2.545 13
3 Belgian waffle ice cream cone 2.916 2.008 14
23 Louisiana mud pie 2.895 2.174 15
32 Tiramisu 2.861 2.684 16
31 Key lime pie 2.733 2.619 17
18 Lemon meringue pie 2.730 2.627 18
1 Créme briilée 2.618 2.521 19
22 Texas pecan pie 2.607 2.562 20
5 French silk pie 2.510 1.932 21
2 Italian gelato 2.504 2.227 22
35 Cannoli 2.489 2.402 23
7 Coconut creme pie 2.398 2.557 24
6 Cinnamon roll 2.397 2.156 25
25 Cinnamon crumble cake 2.312 1.865 26
36 Pumpkin cheesecake 2.264 2.390 27
21 Cherry pie 2.185 2.257 28
15 Vanilla milk shake 2.178 2.092 29
16 Strawberry milk shake 1.999 2.128 30
34 Blueberry tart 1.790 1.940 31
4 Churros 1.714 1.980 32
19 Flan 1.469 2.063 33
12 Bread pudding 1.305 1.868 34
10 Mango lassi 1.120 1.712 35
30 Rice pudding 0.935 1.478 36
Table 8
Sparse BWS Experiment Results (9 quads) (Sorted by Full BWS Utility Rank) (n = 400)

Item # Item Sample (Average) Utility Utility Standard Deviation Utility Rank
26 New York cheesecake 4.462 2.467 5
29 Hot brownie sundae 5.366 2.214 1
9 Chocolate molten cake 5.003 2.402 3
13 Hot fudge sundae 4.753 1.911 4
27 Oreo cheesecake 4.256 2.393 6
17 Chocolate layer cake 5.252 2.016 2
11 Chocolate mousse 4.233 2.001 7
33 Red velvet cake 3.345 1.993 10
20 Skillet chocolate chip cookie 3.684 1.759 8
8 Apple pie 3.480 2.120 9
28 Peanut butter cheesecake 3.128 2.752 13
14 Salted caramel sundae 3.239 2.067 12
24 Peach cobbler 2.843 2.188 15
3 Belgian waffle ice cream cone 3.310 1.870 11
23 Louisiana mud pie 2.855 1.794 14
32 Tiramisu 2.202 1.747 26
31 Key lime pie 2.521 2.470 18
18 Lemon meringue pie 2.163 2.180 27
1 Créme briilée 2.379 2.214 21
22 Texas pecan pie 2.221 1.991 25
5 French silk pie 2.712 1.720 16
2 Italian gelato 2.437 1.574 20
35 Cannoli 2.474 1.835 19
7 Coconut creme pie 2.347 2.316 22
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Table 8 (continued)

Item # Item Sample (Average) Utility Utility Standard Deviation Utility Rank
6 Cinnamon roll 2.336 2.070 23
25 Cinnamon crumble cake 2.581 1.819 17
36 Pumpkin cheesecake 1.626 1.698 31
21 Cherry pie 1.917 1.736 28
15 Vanilla milk shake 2.315 1.793 24
16 Strawberry milk shake 1.673 1.510 29
34 Blueberry tart 1.511 1.685 32
4 Churros 1.663 1.693 30
19 Flan 0.924 1.377 34
12 Bread pudding 1.301 1.423 33
10 Mango lassi 0.684 0.932 36
30 Rice pudding 0.806 1.390 35

Table 9

Express BWS Experiment Results (9 Quads) (Sorted by Full BWS Utility Rank) (n = 404)
Item # Item Sample (Average) Utility Utility Standard Deviation Utility Rank
26 New York cheesecake 5.043 2.271 4
29 Hot brownie sundae 5.961 1.935 1
9 Chocolate molten cake 5.701 2.025 2
13 Hot fudge sundae 4.421 1.817 8
27 Oreo cheesecake 4.961 2.301 5
17 Chocolate layer cake 4.850 2.050 6
11 Chocolate mousse 5.662 1.510 3
33 Red velvet cake 3.201 2.003 14
20 Skillet chocolate chip cookie 4.521 2.256 7
8 Apple pie 3.327 2.085 10
28 Peanut butter cheesecake 3.033 2.613 16
14 Salted caramel sundae 3.290 2.073 11
24 Peach cobbler 2.149 2.000 19
3 Belgian waffle ice cream cone 3.286 2.006 12
23 Louisiana mud pie 3.409 2177 9
32 Tiramisu 3.075 2.418 15
31 Key lime pie 1.853 2.476 23
18 Lemon meringue pie 1.345 1.769 31
1 Créme briilée 1.814 1.915 25
22 Texas pecan pie 1.824 1.840 24
5 French silk pie 2.941 1.932 17
2 Italian gelato 2.206 1.992 18
35 Cannoli 2.116 1.846 20
7 Coconut creme pie 1.705 2.034 27
6 Cinnamon roll 2.062 2.050 21
25 Cinnamon crumble cake 3.285 2.146 13
36 Pumpkin cheesecake 1.170 1.619 33
21 Cherry pie 1.488 1.875 29
15 Vanilla milk shake 2.013 1.708 22
16 Strawberry milk shake 1.751 1.604 26
34 Blueberry tart 1.279 1.541 32
4 Churros 1.422 1.682 30
19 Flan 0.772 1.256 35
12 Bread pudding 1.532 2.014 28
10 Mango lassi 0.782 1.063 34
30 Rice pudding 0.751 1.284 36

Table 10

Sparse “Known” BWS Experiment Results (27 quads) (Sorted by Full BWS Utility Rank) (n = 400)
Item # Item Sample (Average) Utility Utility Standard Deviation Utility Rank
26 New York cheesecake 4.449 2.538 5
29 Hot brownie sundae 4.921 2.049 1
9 Chocolate molten cake 4.724 2.263 2
13 Hot fudge sundae 4.635 2.123 3

(continued on next page)
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Table 10 (continued)

Item # Item Sample (Average) Utility Utility Standard Deviation Utility Rank
27 Oreo cheesecake 4.142 2.467 6
17 Chocolate layer cake 4.609 2.113 4
11 Chocolate mousse 3.949 2.143 7
33 Red velvet cake 3.246 2.402 11
20 Skillet chocolate chip cookie 3.436 2.219 8
8 Apple pie 3.337 2.361 9
28 Peanut butter cheesecake 3.031 2.673 13
14 Salted caramel sundae 3.250 2.389 10
24 Peach cobbler 2911 2.663 14
3 Belgian waffle ice cream cone 3.203 2.045 12
23 Louisiana mud pie 2.630 2.027 18
32 Tiramisu 2.504 2.622 21
31 Key lime pie 2.636 2.637 17
18 Lemon meringue pie 2.324 2.399 26
1 Créme briilée 2.391 2.418 24
22 Texas pecan pie 2.409 2.554 23
5 French silk pie 2.709 2.115 15
2 Italian gelato 2.495 2.008 22
35 Cannoli 2.549 2.203 19
7 Coconut creme pie 2.349 2.452 25
6 Cinnamon roll 2.527 2.211 20
25 Cinnamon crumble cake 2.692 2.036 16
36 Pumpkin cheesecake 2.006 2.384 29
21 Cherry pie 2.063 2.222 28
15 Vanilla milk shake 2.217 1.941 27
16 Strawberry milk shake 1.855 1.903 30
34 Blueberry tart 1.591 1.900 32
4 Churros 1.691 1.973 31
19 Flan 1.087 1.781 34
12 Bread pudding 1.446 2.020 33
10 Mango lassi 0.906 1.463 36
30 Rice pudding 1.079 1.817 35
Table 11
Express “Known” BWS Experiment Results (27 quads) (Sorted by Full BWS Utility Rank) (n = 404)

Ttem # Item Sample (Average) Utility Utility Standard Deviation Utility Rank
26 New York cheesecake 4.790 2.398 2
29 Hot brownie sundae 4.997 2.200 1
9 Chocolate molten cake 4.707 2.298 3
13 Hot fudge sundae 4.409 2.202 5
27 Oreo cheesecake 4.565 2.377 4
17 Chocolate layer cake 4.400 2.193 6
11 Chocolate mousse 4.086 2.088 7
33 Red velvet cake 3.497 2.316 9
20 Skillet chocolate chip cookie 3.825 2.334 8
8 Apple pie 2.953 2.296 12
28 Peanut butter cheesecake 2.858 2.670 15
14 Salted caramel sundae 3.365 2.405 10
24 Peach cobbler 2.789 2.573 18
3 Belgian waffle ice cream cone 2.839 2.031 16
23 Louisiana mud pie 2.934 2.170 13
32 Tiramisu 3.031 2.752 11
31 Key lime pie 2.158 2.480 26
18 Lemon meringue pie 2.020 2.298 28
1 Créme briilée 2.481 2.321 19
22 Texas pecan pie 2.275 2.316 24
5 French silk pie 2.810 2.042 17
2 Italian gelato 2.294 2.139 23
35 Cannoli 2.372 2.049 21
7 Coconut creme pie 2177 2.478 25
6 Cinnamon roll 2.476 2.115 20
25 Cinnamon crumble cake 2.900 2.181 14
36 Pumpkin cheesecake 1.927 2.230 29
21 Cherry pie 1.721 2.059 30

(continued on next page)
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Table 11 (continued)

Item # Item Sample (Average) Utility Utility Standard Deviation Utility Rank
15 Vanilla milk shake 2.294 2.151 22
16 Strawberry milk shake 2.115 2.053 27
34 Blueberry tart 1.556 1.773 33
4 Churros 1.610 1.780 32
19 Flan 1.157 1.772 34
12 Bread pudding 1.640 2.143 31
10 Mango lassi 0.872 1.327 36
30 Rice pudding 1.103 1.809 35

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/].jocm.2019.01.002.
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